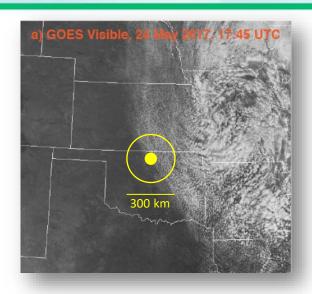


Part 2: Observations and Data Bundle Selection

Presenter: Andy Vogelmann, Brookhaven National Laboratory

What you will learn

- Shallow convection case selection
- Observations used for simulation evaluation
- Skill scores for ranking the simulations
- LASSO Bundle Browser Find and order the simulations you want



Shallow Convection Cases

- LASSO only run for selected ShCu days
- Manually selected considering, e.g.:
 - ShCu cloud field present over the SGP (many obs)
 - Cloud uniformity across forcing domain (GOES vis)
 - No wide-spread precipitation (NEXRAD, GOES IR)
 - Have critical measurements (e.g., 12Z sonde, LWP, etc.)
- Skill scores used to rank ensemble simulations
 - But any LES simulation is valid, right?
 - Want a statistical library of representative cases for study

Available ShCu Cases

Year	Number of Cases
2015	5
2016	13
2017	30
2018	30
2019	17
Total	95

> 760 simulations

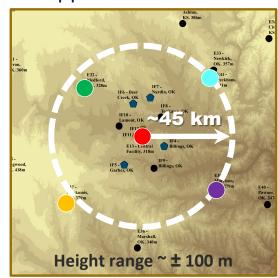
Observations: 'Data scales'

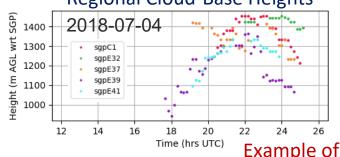
'Point' or Pencil-beam

In situ or Column obs

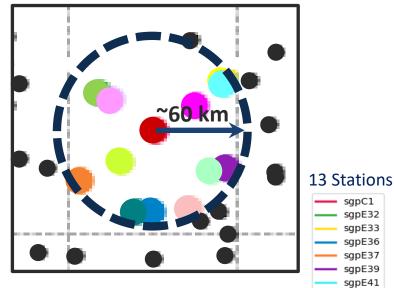
Ka-Band ARM Zenith Radar (KAZR)

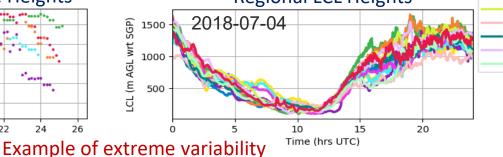
'Local'


Total-Sky Imager (TSI)


COGS (Clouds Optically Gridded by Stereo) VAP

Regional Networks


Doppler Lidar Network


Regional Cloud-Base Heights

ARM Met and OK Mesonet Stations

Regional LCL Heights

sgpE32 sgpE33

sgpE36

sgpE37 sgpE39 sgpE41

BLAC BREC

CARL

MRSH

MEDF

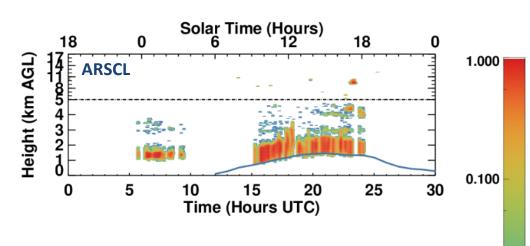
REDR

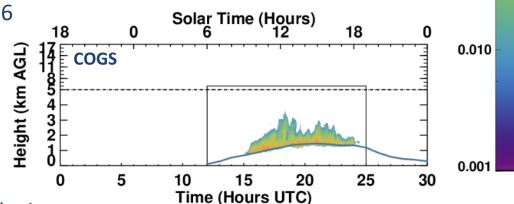
Variable	'Point'	Local	Domain	Comments
In-cloud liquid water path (LWP)	X			Combined (1) AERIoe & (2) MWRRet
Cloud fraction	ARSCL	TSI or COGS*		To be discussed
2-D Time-height cloud mask	ARSCL	COGS*		To be discussed
Cloud-base height			X	Doppler lidar network
Lifting condensation level (LCL) height	Х		Х	Met stations (CF or Met Network)
Thermo state variables: T, Qv, and RH				
At the surface	Х			CF met station
Middle of the boundary layer (BL) (500-700 m average)	Х			Blended Raman lidar & AERIoe profiles

*COGS available for 2018 & 2019 only

ARM

Observations: Cloud fraction sources and comments


Cloud fraction


- Sources
 - Total-Sky Imager (TSI)
 - \circ ARSCL (z < 5 km)
 - COGS (Romps and Öktem, BAMS, 2018)
- Comments
 - TSI can be contaminated by upper-level cloud
 - ARSCL too sensitive and is pencil-beam obs
 - Good correlation between TSI and ARSCL time series indicates no upper-level cloud influencing the TSI
 - \circ COGS (when available) reliable for cloud frac < \sim 0.5-0.6

2-D cloud mask

- Sources
 - ARSCL
 - COGS (when available)
- Comments
 - ARSCL is a pencil-beam obs and can be contaminated by insects (correction method in progress by Christopher Williams et al.)

2-D Time-Height Cloud Frequency/Fraction

Cloud Fraction

Observations: LASSO data sets

lassodiagobsmod

- Available for all data bundles
 - Contains hourly averages of the variables used for LASSO simulation evaluation

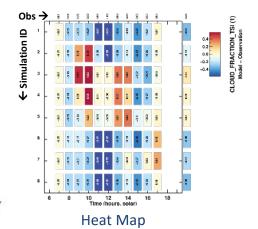
High-frequency observation products at native resolution

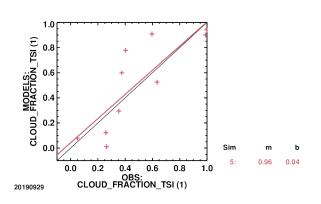
- Available for 2018, 2019, and (soon!) 2017
 - LASSO Liquid Water Path (LASSOLWP): liquid water path from AERIoe & MWRRet, 10-second resolution
 - Cloud Fraction (CLDFRAC): cloud cover from KAZRARSCL and TSI, 1-, 5-, 15-minute resolution
 - LASSO Middle Boundary-Layer Thermodynamics (LASSOBLTHERMO): temperature and moisture in middle of the boundary layer (500-700 m) from AERI and Raman lidar, 10-minute resolution
 - LASSO Doppler Lidar Cloud-Base Height for Shallow Cumulus (LASSODLCBHSHCU): cloud-base heights from the Doppler lidars, 10-minute resolution
 - Lifting Condensation Level Height (LCLHEIGHT): LCL at 1-min resolution
 - Radar Wind Profiler Wind Consensus (RWPWINDCON): horizontal wind from radar wind profilers (RWPs),
 10-minute resolution (2019 only) [used in LASSO data assimilation]

COGS-based simulation evaluations

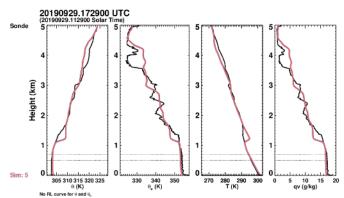
- Available 2018 and 2019 (via the ARM Data Discovery under "lassocogs"; Bundle Browser inclusion pending)
 - Cloud fraction
 - 2-D time-height cloud mask

Model-Observation Diagnostics


Simulated variables processed similarly to the observations for apples-to-apples comparison

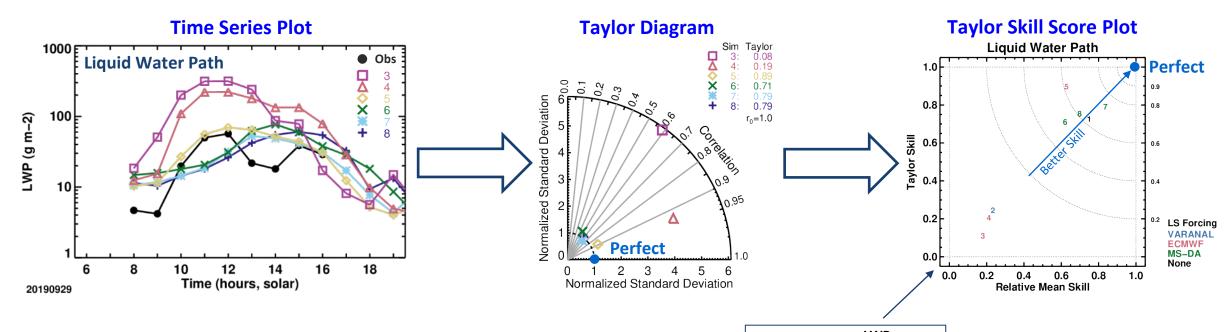

- Co-registered model and observations (e.g., time, vertical grid)
- Sample the simulated variables considering measurement sensitivity (e.g., LWP)
- Ideally, use the same algorithm (e.g., LCL)

Diagnostic plots available


- Heat maps for differences of the simulated time series from observations
- Regression analyses for slope and intercept, including phase space plots of cloud frac vs. LWP
- Thermodynamic profiles at sonde times (Θ , Θ_e , T, q_v)
- Time series with average difference, RMS, and correlation coefficient
- Taylor diagrams for standard deviation and correlation phase space
- 2-D cloud masks for simulated model location and timing

Note: All examples use case day 2019-09-29

Regressions



ENERGY

Thermodynamic Profiles

Skill scores: Taylor Skill Score to assess Time Series

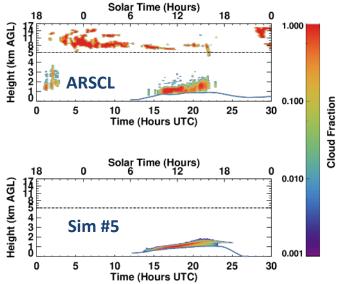
Net Taylor Skill Score: One number

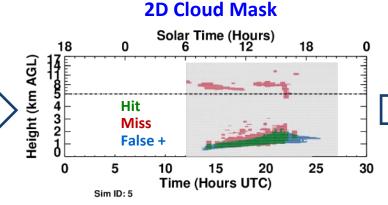
$$S(var) = \left(S_T(var) * S_{RM}(var)\right)^{\frac{1}{2}}$$

Taylor Skill Relative Mean Skill

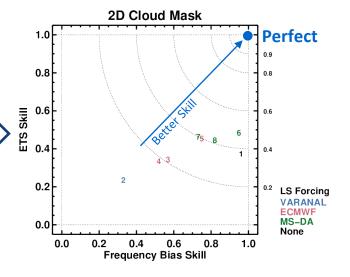
	LWP
Sim ID	Net Taylor Skill Score
1	0.73
2	0.23
3	0.13
4	0.20
5	0.74
6	0.66
7	0.81
8	0.72

Notes on interpretation


- [0,1] where 1 is perfect
- High is 'good,' low is 'bad'
- Do not over interpret values; use plots when values close



Skill scores: Equitable Threat Score (ETS) to assess 2D Cloud Mask


Time-Height Cloud Frequency/Fraction

2D Skill Score Plot

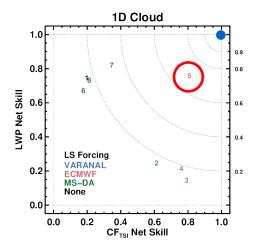
Net ETS Skill Score

$$S(2D) = (S_{ETS} * S_{Bias})^{\frac{1}{2}} \square$$

Sim ID	2D Cloud Mask Skill
1	0.59
2	0.27
3	0.43
4	0.41
5	0.58
6	0.67
7	0.57
8	0.60

Same notes on interpretation:

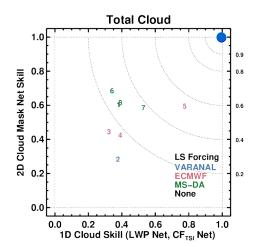
- [0,1] where 1 is perfect
- High is 'good,' low is 'bad'
- **Do not** over interpret values; use plots when values close


Combine two net skill scores (x,y) into one value

$$S(x,y) = (S(x)*S(y))^{\frac{1}{2}}$$

Two special multivariable scores are provided

1D Cloud Skill Score


- LWP Net Taylor Skill
- TSI cloud fraction Net Taylor Skill

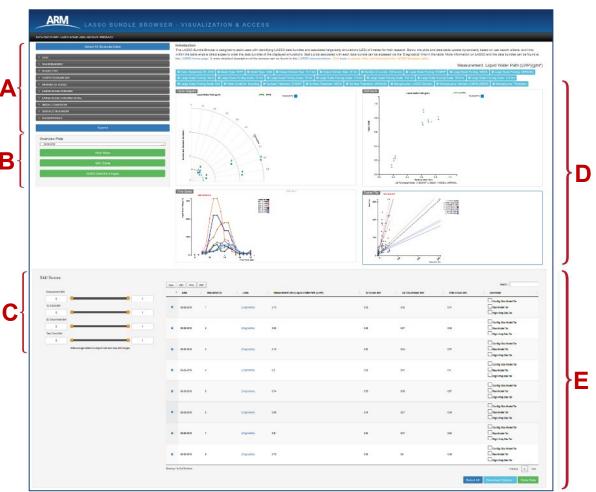
S	im ID	1D Cloud Skill
	1	0.38
	2	0.38
	3	0.32
١.	4	0.39
	5	0.78
	6	0.34
	7	0.53
	8	0.39
	8	0.39

Total Cloud Skill Score

- 1D Cloud
- 2D ETS Net Skill

Sim ID	Total Cloud Skill
1	0.47
2	0.32
3	0.37
4	0.40
5	0.67
6	0.48
7	0.55
8	0.48

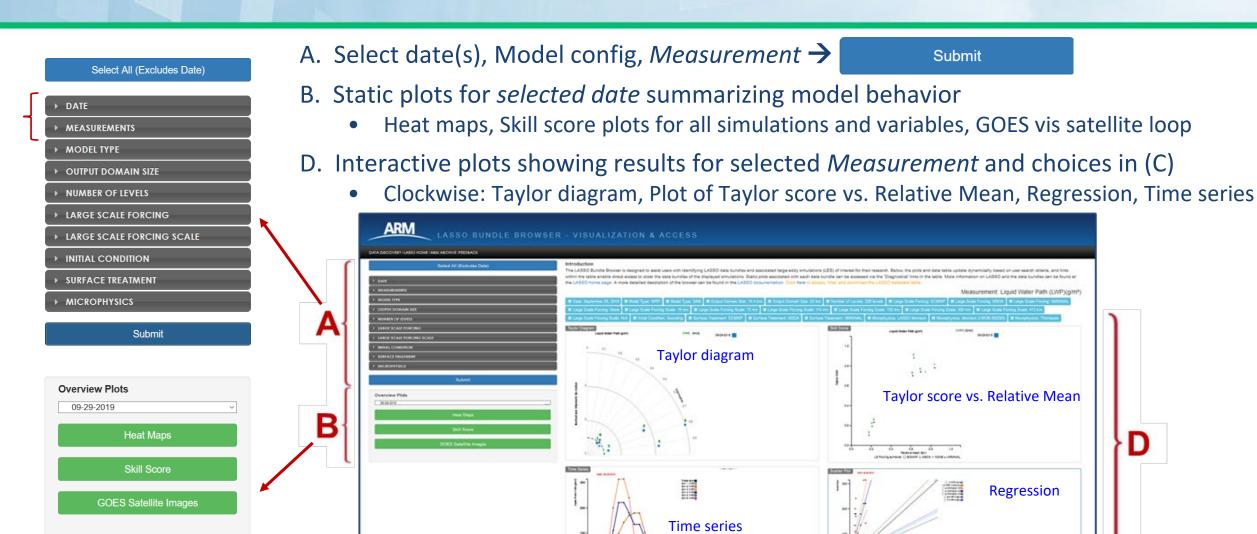
The LASSO Bundle Browser

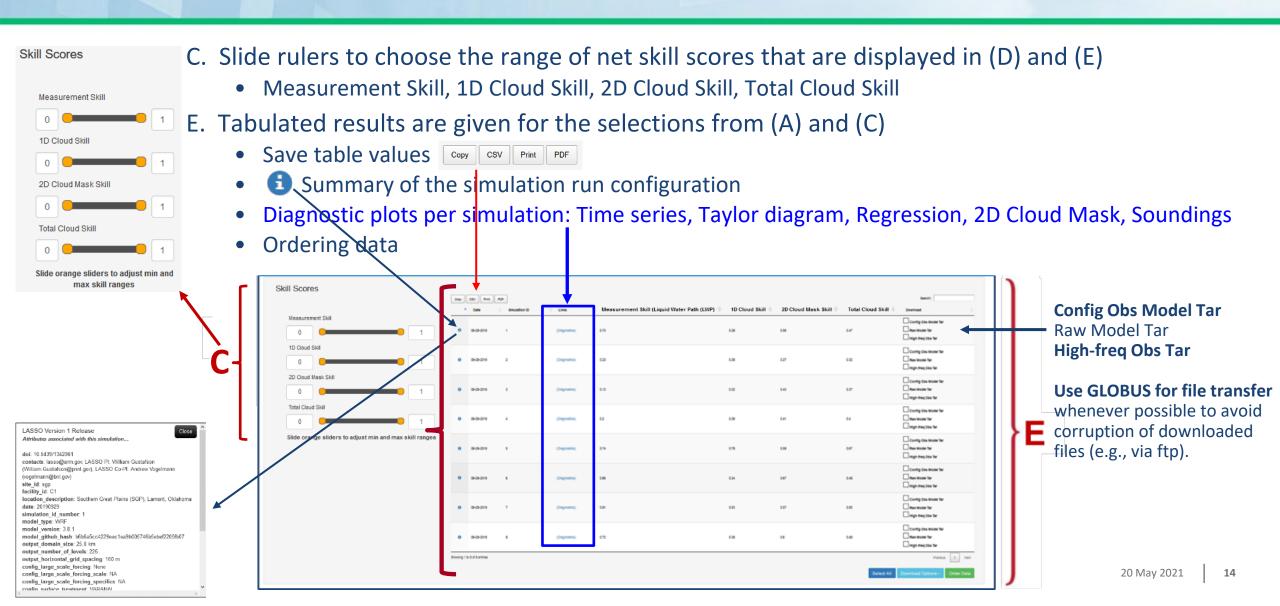

Developed and/or maintained by

- Kyle Dumas
- Michael Giansiracusa
- Bhargavi Krishna

Enables:

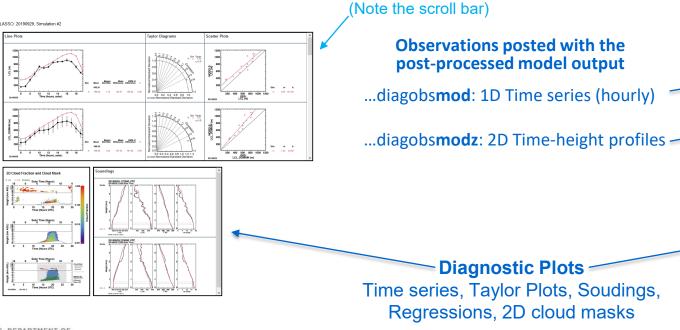
- 1. Interactive querying of LASSO sims & skill
- 2. Contains diagnostic plots
- 3. Ordering of data bundles


https://adc.arm.gov/lassobrowser

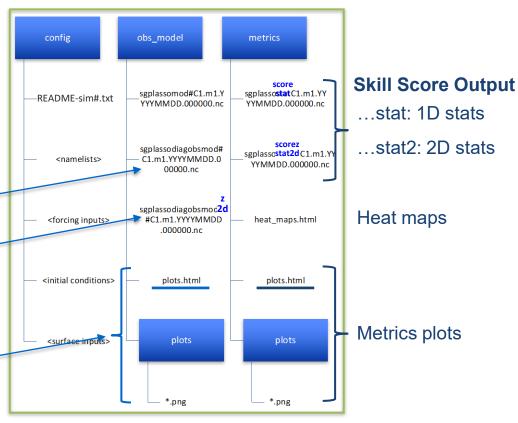

LASSO Bundle Browser: Upper half (A, B, D)

ARM

LASSO Bundle Browser: Lower half (C, E)



Observation locations in the LASSO data bundles



LASSO observations contained in a series of tar files

- sgplassodiagconfobsmod##C1.m1.YYYYMMDD.tar 70 MB → sgplassodiagconfobsmod##C1.m1.YYYYMMDD.tar
- sgplassohighfreqobsC1.c1.YYYYMMDD.000000.tar 145 MB
- sgplassocogsC1.c1.YYYYMMDD.000000.tar11/511 MB

Data Bundle Tar-file Structure for "Config Obs Model Tar"

Questions?

Topics covered in Part 2

- Shallow Convection Cases
- Observations used for simulation evaluation
- Skill scores for ranking the simulations
- LASSO Bundle Browser Find and order the simulations you want

